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The effect of cross-sectional shape on tensile strength of pitch-based carbon fibres was 
investigated by extensive single-filament testing. For this study, round and trilobal pitch-based 
carbon fibres were produced at similar processing conditions. The application of a variety of 
distributions, including the simple Weibull distribution, to the strength data indicated two sources 
of failure, one source being the accentuation of end effects at short gauge lengths. A new mixed 
distribution, the end-effect distribution, was proposed to account for these effects and applied to 
the experimental data. The end-effect model provided an excellent description of the strength 
distributions of all fibres studied. The end-effect distribution is not complex and is based on sound 
physical assumptions. It quantifies a recognized inadequacy of the test method which has not 
previously been accounted for, and it allows separation of end effects from the true fibre strength 
distribution. The results indicate that end effects can be an important concern for gauge lengths as 
long as 40 mm. Use of this model revealed that, in the absence of end effects, all fibres failed due 
to macroscopic flaws; thus, varying the fibre geometry does not result in an unusual failure 
mechanism. However, the tensile strengths of the non-circular fibre were found to be less 
dependent on fibre size. Thus, non-circular fibres can be produced at higher mass flow rates, 
decreasing filament breakage and increasing process conversions. 

1. Introduction 
Pitch-based carbon fibres are produced in a three-step 
process, the first of which consists of melt-extruding 
the mesophase pitch precursor into fibre form. Then, 
the as-spun fibres are oxidized or stabilized in air to 
render them infusible. In the last step, carbonization 
or graphitization, the stabilized fibres are heated 
in an inert atmosphere to temperatures greater than 
1500 ~ to develop the final fibre properties. 

The resulting pitch-based carbon fibre is extremely 
brittle, and as Fig. 1 illustrates, single-filament tensile 
data exhibit a great deal of scatter. This scatter is 
a direct result of the various flaws contained in the 
fibre, flaws which are either present in the precursor 
material or are introduced during any of the three 
processing steps. In a study of pitch-based carbon 
fibres by Jones et al. [1-], the authors identified a large 
variety of failure-inducing flaws, including surface 
damage and/or pitting, mineral inclusions, ferrous 
particle inclusions from the spinning equipment, elon- 
gated voids believed to be due to gas bubbles, and 
voids which appeared to be the result of inclusions 
burned off during heat treatment. In addition, there 
appeared to be little correlation between flaw type and 

failure stress level, indicating that fibre strength is 
more dependent on the severity rather than the type 
of flaw. 

Owing to the inherently flaw-limited nature of 
pitch-based carbon fibres, single-filament tensile 
strength data obtained from these fibres are difficult to 
characterize. For example, in research focused on im- 
provements in the tensile strength of pitch-based car- 
bon fibres, preliminary investigations [2, 3] at 
Clemson University indicated that non-circular fibres 
were stronger than round fibres of equivalent cross- 
sectional area. However, the scatter in the tensile test 
data prevents little more than a comparison of average 
strengths, and this average strength yields no insight 
into why one fibre type or shape might be stronger 
than another. 

Fortunately, because the occurrence of flaws within 
the fibre is random in nature, carbon fibre tensile 
strength data lend themselves to statistical analysis. 
Normally, statistical techniques assume that the fibre 
strength follows some given distributional form, and 
many of these distributions are based on certain 
theoretical assumptions concerning the nature of the 
dominant flaw populations. Thus, by evaluating the fit 
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Figure 1 Typical scatter in carbon fibre single-filament tensile data. 

of various statistical models to strength data, valuable 
information concerning the applicability of these as- 
sumptions can be obtained. 

The work presented here details a model developed 
as part of an attempt to characterize the single-fila- 
ment tensile strength of round and trilobal pitch- 
based carbon fibres. None of the distributions pre- 
sented in the literature provided a consistent descrip- 
tion of the experimental strength data, but the results 
suggested that the strength data contained test- 
method related failures, in addition to failures induced 
by flaws. An end-effect model based on this assump- 
tion was developed and found to provide an accurate 
and consistent description of the observed data. 

Before discussing the fit of this and other models to 
the observed data, it is necessary to have some under- 
standing of the single-filament test method and the 
data typically obtained for carbon fibres using this 
method. Therefore, we begin with a background dis- 
cussion of single-filament testing, as applied to brittle 
fibres. Then, a number of applicable distributions 
found in the literature are derived, and the underlying 
assumptions of each are discussed. In addition, the 
end-effect model developed in this study will be de- 
rived before presenting the results. 

The primary focus of this paper is to present the 
new model for describing pitch-based fibre strength. 
For details concerning the motivating issue behind 
the development of the model, the effect of shape on 
pitch-based fibre strength, the reader is referred to 
Stoner [-4]. Nevertheless, the conditions under which 
the fibres were produced and tested are briefly detailed 
in the experimental section. 

Finally, the results of applying various distributions 
to the single-filament test data are presented along 
with statistical analyses which prove that the end- 
effect model is superior for describing brittle fibre 
data. More importantly, the model provides addi- 
tional insight into the effect of shape on fibre tensile 
strength. 

2. Background 
2.1. Single-filament testing 
Single-filament testing is a widely used technique for 
obtaining the tensile strength of materials manufac- 
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tured in fibre form. For polymeric fibres which exhibit 
appreciable elongation before failure, the test method 
is relatively simple because the fibres can be gripped 
directly by the tensile-testing device. However, brittle 
fibres such as carbon will shatter if gripped directly, 
and thus require a different fibre support technique. 

The American Society for Testing and Materials 
(ASTM) describes the acceptable single-filament test 
method for high-modulus materials [5]. This standard 
dictates that the fibre first must be mounted on a slot- 
ted testing tab, as shown in Fig. 2, with the fibre 
aligned along the centre of the tab. Glue is used to 
secure the fibre at opposite ends of the slot, and the 
tested length of fibre between the glue spots is desig- 
nated as the gauge length. After the glue has cured, the 
ends of the tab are grasped by the grips in the upper 
fixed member and lower moveable member of a ten- 
sile-testing device, such as Instron's model TM. The 
sections of the tab indicated in the figure then are 
severed so that the fibre is effectively supported only 
by the grips of the testing device. When the test is 
initiated, the lower crosshead begins to move down- 
ward at a constant speed, straining the fibre until 
failure occurs. 

The calculation of failure stress requires both the 
breaking load obtained from the tensile testing de- 
vice and the fibre cross-sectional area. The standard 
recommends the use of an average cross-sectional 
area, obtained from measurements of at least 20 fibres 
in the sampled bundle. While this is acceptable for 
commercial fibres with comparatively small varia- 
tions in fibre size, experimental fibres can exhibit ap- 
preciable variations in cross-sectional area from fibre 
to fibre. Therefore, for accurate tensile strength meas- 
urements of experimental fibres, it is more appropriate 
to measure the cross-sectional area of each fibre tes- 
ted. For round fibres, this measurement can be ac- 
complished through a variety of optical methods, but 
the measurement of non-circular fibre cross-sectional 
area is more difficult. The measurement for non-circu- 
lar fibres requires mounting a segment of the fibre in 
resin, polishing the cross-section, and measuring the 
area using a microscope system. 

Because carbon fibres fail at extremely low strains, 
the elongation of the system can dominate the ob- 
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Figure 2 Single-filament testing tab. 
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served crosshead displacement. To ensure the calcu- 
lation of reliable failure strain data, the standard test 
method recommends that system compliance (system 
elongation per unit load) be accounted for and that 
a gauge-length to fibre diameter ratio of at least 2000 
be utilized in single-filament testing. Failure stress, 
however, is unaffected by system compliance; thus, 
when tensile strength is the primary property of inter- 
est, carbon fibre data are typically reported at gauge 
lengths ranging from 0.l-40 mm [1, 6-8]. 

For carbon fibres, the gauge length utilized is cru- 
cial because the average strength decreases as the 
gauge length increases [1, 6]. This is a direct result of 
the flaws contained within the fibre; fibres of longer 
lengths possess a larger number of flaws, and therefore 
have more potential failure sites and a greater prob- 
ability of failing at a severe flaw. Thus, the average 
strength obtained from single-filament testing applies 
only to the tested gauge length, and the gauge length 
chosen depends on tile purpose of single-filament test- 
ing. For example, short gauge lengths have been used 
to estimate the tensile strength of the fibre critical 
length, the minimum length of fibre required to ensure 
adequate load transfer in composite applications [6]; 
longer gauge lengths are typically used to report accu- 
rately failure strain data. 

Because of the usefulness of carbon fibre failure at 
various gauge lengths, statistical techniques often are 
used to describe the gauge-length dependency of fibre 
strength. Theoreticalily, such techniques allow the pre- 
diction of average fibre strength at untested gauge 
lengths. In practice, extrapolation outside the range of 
the data is always subject to question. Thus, most 
researchers test at multiple gauge lengths before using 
these techniques in an effort to obtain as much in- 
formation as possible concerning the gauge-length 
dependency of average fibre strength. 

A final aspect of pitch-based carbon fibre testing 
which must be discussed concerns the number of fibres 
which must be tested to report data. As Fig. 1 illus- 
trates, the flaw-limited nature of the fibre leads to 
a large variation in the tensile strength. While the data 
used to prepare this plot were obtained using experi- 
mental fibres, commercial fibres also exhibit signifi- 
cant strength variations. As a rule of thumb, analysis 
of commercial fibre data using a simple two-para- 
meter distribution of fibre strength is rarely reported 
when less than 30 fibres have been tested, and the use 
of 50 single-filament tests [6, 8] appears to be an 
acceptable basis, in practice, for such work. 

2.2. Simple Weibull distribution 
As previously mentioned, the common approach to 
analysing fibre tensile strength data involves assuming 
that the fibre strength follows some given distribution. 
The most popular distribution is based on the Weibull 
cumulative distribution function, F, with parameters 
C~o and m [9] 

E F = 1 - exp - (1) 

The cumulative distribution function, F, describes the 
probability that a fibre will fail at stress level less than 
or equal to ~. The probability density function, f, of 
this distribution is 

f = m ( c Y ~ m e x p ~ - ( ~ ) m ;  
c~\cyo/ L ~oo (2) 

In Equations 1 and 2, Cyo and m are the Weibull scale 
and shape parameters, respectively, and ~ is the stress 
level at which failure occurs. In general, m is inversely 
related to the variance of c~ about its mean value, and 
cyo serves to normalize the variable c~. The mean value 
Of O', 6., is 

6" = c%F(1 + 1/m) (3) 

where F represents the gamma function. 
There are a variety of distributions other than the 

Weibull distribution which are commonly used to 
describe life data, which in this case, refers to the 
lifetime of a carbon fibre, measured in terms of stress 
level. Most of these are exponential in nature, and 
examples include the normal, exponential, and 
smallest extreme value distributions. The popularity 
of the Weibull distributions arises from two factors 
[9]. First, it is often found that the Weibull distribu- 
tion simply provides a more accurate description of 
the observed data. In addition, the Weibull probab- 
ility density function, unlike most others, is flexible in 
shape. Depending on the value of m, the Weibull 
density function can reduce to or approximate the 
shape of various other density functions. 

The exact shape of the Weibull probability density 
function is illustrated in Fig. 3. For values of m be- 
tween 3.0 and 4.0, the Weibull distribution approx- 
imates the normal distribution. When m is unity, the 
Weibull distribution reduces to the exponential distri- 
bution, and when m is 2.0, a distribution called the 
Rayleigh distribution is obtained. 

Thus, when very little information is available con- 
cerning the underlying life distribution, the Weibull 
distribution allows description of the data without 
imposing stringent assumptions concerning the shape 
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Figure 3 Various shapes assumed by Weibull distribution. 
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of the unknown density function. The results of fitting 
a simple Weibull distribution can then be examined to 
ascertain whether another distribution might be more 
appropriate, but as already stated, Nelson [9] notes 
that the Weibult is typically more suitable for de- 
scribing life data than any of those which it can 
approximate. 

The Weibull distribution has been adapted to spe- 
cifically account for the gauge-length dependency of 
the tensile strength of brittle fibres. To illustrate this 
adaptation, recall that the cumulative distribution 
function, F, describes the probability that a fibre will 
fail at or below stress level ~. Because the fibre fails or 
survives with probability of one at any stress level, the 
exponential term on the right-hand side of Equation 
1 is the probability of fibre survival, S, at stress level g. 

E ( o;l S = exp - (4) 

The derivation of the simple Weibull distribution 
for brittle fibres utilizes this survival probability and 
weakest link theory [6, 8]. In this derivation, the fibre 
is assumed to consist of L independent links of arbit- 
rary unit length. The strength of each link is assumed 
to be identically and independently distributed; that is, 
the failure or survival of each link is independent of its 
neighbours, and the strength distribution of each link 
is a simple Weibull with identical scale and shape 
parameters. In order for the entire fibre to survive 
stress level or, each of the links must also survive. 
Because the links are independent, the probability that 
the entire fibre survives is the product of the prob- 
abilities that each link survives. Denoting Si as the 
probability of survival for link i, this is expressed 
mathematically as 

L 

S = I ] s i  = (SO L 
i = 1  

[ = exp - L (5) 

Thus, the adapted Weibull cumulative distribution 
function used to model fibre strength and the prob- 
ability density function are given by 

F = 1 - e x p l -  L(~ (6) 

f = ~ - ~ o o ) e x p  - 

The mean strength calculated for this distribution is 

t~ = (70 L-1/mF(1 -k 1/m) (8) 

In applying this distribution to experimental data, the 
term L is the gauge length at which the fibres were 
tested. 

With the dependency of strength on gauge length 
explicitly accounted for, the Weibull scale and shape 
parameters should be constant for all L because, the- 
oretically, a change in L simply increases the number 
of links in the fibre. The strength of each unit length is 
assumed to follow the same strength distribution, and 
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because the strength is flaw-limited, the parameters 
which describe the distribution of strength are also 
characteristic of the flaw population. The object, then, 
is to find the scale and shape parameters which most 
accurately describe the experimentally observed data. 
A commonly used approach relies on a least-squares 
fit of a linear form of Equation 6. 

(1) 
lnln = mln(cr)+ mln~-~o ) (9) 

The expression on the right-hand side of Equation 9, 
commonly called the Weibull quantity, is the depen- 
dent variable, while the natural logarithm of the stress 
level is the independent variable. Thus, m is the slope 
obtained from a linear regression of the dependent 
variable on the independent variable, and the scale 
parameter is calculated using the least-squares inter- 
cept and slope. Performing the linear regression 
requires estimation of the probability of failure, F, 
because it is not known directly from the raw data. 
However, the raw data do yield stress levels at which 
failure occurred, and the probability of failure at or 
below stress level c~ can be estimated as a value ap- 
proximately equal to the fraction of fibres which failed 
at or below that stress level. 

Another method which can be used to fit the 
Weibull distribution to experimental data is the max- 
imum likelihood method, in which the likelihood func- 
tion, l, is the product of the density function evaluated 
at all gauge lengths and failure stress levels: 

N 

I = l-I f~ (10) 
i = l  

{where, fi refers to the density function evaluated at 
a particular gauge length and stress level, and N is the 
number of stress levels.) Equivalently, the log-likeli- 
hood function, ~ ,  can be used, because the likelihood 
function and its natural logarithm exhibit a maximum 
at the same parameter values. 

N 

2# = ~ lnf~  (ll) 
i = l  

To speak in general terms, if f is a function of 
p parameters, the likelihood function is maximized by 
calculating the first partial derivative of L,r with re- 
spect to each of the p parameters. Each derivative is 
equated to zero, and this leads to p equations with 
p unknowns. 

The linear fit of the Weibull distribution has the 
advantage of simplicity, and the form of the equation 
provides a useful means for graphically inspecting the 
data and comparing various models, even when a least 
squares approach is not used to fit the parameters. 
The ML method offers the advantage that a single set 
of parameters can be determined for all gauge lengths 
simultaneously; with a least squares approach, the 
parameters must be determined separately for each 
gauge length. (If the Weibull distribution is appro- 
priate, the parameters sets for different gauge lengths 
should be essentially the same.) 

The power and popularity of the simple Weibull 
distribution lie in the ease with which the distribution 



can be fit and its flexibility. In addition, the distri- 
bution described here accounts explicitly for the effect 
of gauge length on fibre strength; thus, in theory, it 
should provide a means for estimating fibre strength 
at untested lengths. Unfortunately, while the Weibull 
distribution often provides a good fit to experimental 
brittle fibre strength data taken at any one gauge 
length, it rarely gives a consistent description of fibre 
strength over a range of gauge lengths [6, 7, 10, 11]. 
For a least squares fit, the parameters often change 
significantly with gauge length, and as will be seen in 
the results section, the single set of maximum likeli- 
hood parameters often yields a poor fit of the experi- 
mental data. 

When a simple Weibull distribution seems inappro- 
priate, it might be assumed that the form of the distri- 
bution itself is incorrect. However, recall that the 
shape of this distribution has great flexibility; the 
simple Weibull distribution is capable of approxim- 
ating a variety of distributions considered suitable for 
modelling life data. 

Another, more plausible explanation for pitch- 
based carbon fibres is based on the fact that they are 
known to possess a variety of different flaw types. 
Assuming that a simple Weibull distribution is appro- 
priate also implies the assumption that each flaw type 
affects the tensile strength in the same manner. In 
other words, it is assumed that all flaws result in one 
flaw population which gives rise to a simple Weibull 
distribution of strength. This is not necessarily the 
case; certain flaws or groups of flaw types acting alone 
might give rise to WeJbull distributions which act over 
the same stress ranges but have different characteristic 
shapes. Thus, these flaws or groups of flaw types 
would comprise a separate flaw poPulation, giving rise 
to a distinctly different distribution of strength charac- 
terized by distinctly different distribution parameters. 

By way of example, suppose that there are two flaw 
populations, each of which, acting alone, gives rise to 
a simple Weibull distribution of strength, but the 
parameters which characterize the two strength distri- 
butions are significantly different. One unique flaw 
population might consist of internal flaws within the 
fibre, while the other might consist of surface flaws. In 
this case, the cumulative distribution is actually a mix- 
ture of the distributions due to each of the two flaw 
populations, and the use of a simple Weibull distri- 
bution is an attempt to combine the effects of four 
Weibull parameters to obtain a two-parameter model. 

If more than one flaw population controls the fibre's 
tensile strength, a more complex distribution, a mixed 
distribution, is required to describe properly this situ- 
ation. The choice of the appropriate mathematical 
form of the cumulative distribution function depends 
on how the different flaw populations coexist within 
the fibre. When the goal of the study is to understand 
the effect of factors such as gauge length or fibre shape 
on tensile strength, the formulation and use of the 
appropriate distribution is particularly crucial in ob- 
taining reliable results. 

Obviously, the next level of complexity beyond the 
simple Weibull distribution is to assume that  there 
are only two distinct, independent (i.e. non-interac- 

ting) flaw populations which significantly affect the 
fibre's tensile strength. Because of the Weibull distri- 
bution's flexibility, a reasonable assumption is that 
each of the  populations acting alone gives rise to 
a simple Weibull distribution of strength. Thus, at 
least four parameters are required: go1 and ml, the 
Weibull scale and shape parameters associated with 
one flaw population, referred to for convenience's sake 
as flaw population 1; and Oo2 and m2, the Weibull 
scale and shape parameters associated with the re- 
maining flaw population, or flaw population 2. 

Owing to the large amount of data required to 
adequately estimate several parameters and the tedi- 
ous nature of the data collection technique, very little 
work has been presented in the literature concerning 
mixed strength distributions for brittle fibres. How- 
ever, Johnson [12] has presented the theoretical for- 
mulation of three different distributions to describe life 
data using a mixture of simple Weibulls. EachofChese 
is based on the assumption that the lifetime distribu- 
tion of the part (or, in this case, the strength distribu- 
tion) is controlled by two distinct, independent flaw 
populations. 

In Johnson's work, the differences in the mathemat- 
ical form of the distributions arise from differences in 
the assumptions concerning how the flaw populations 
coexist within the tested part (i.e. the fibre). In the 
concurrent model, he assumes that each part is subject 
to both flaw populations 1 and 2. The cumulative 
distribution function for the exclusive model is based 
on the assumption that each part contains one of the 
two flaw populations, but not both. Finally, the cumu- 
lative distribution function for the partially concur- 
rent model is derived by assuming that certain parts 
contain both flaws while the remaining parts contain 
only one of the two flaw populations. In the partially 
concurrent model, flaw population 1 is called a back- 
ground flaw because it is present in all parts. 

In each of the models, Johnson [12] assumes that 
the fibre is subject to two and only two flaw popula- 
tions. A simple Weibull distribution of strength would 
result if either of the two were present alone. Thus, the 
probabilities of survival, $1 and $2, at stress level 

associated with flaw populations 1 and 2, respect- 
ively, are simple Weibull survival probabilities: 

$1 = exp - \ o O l /  J 

/ ov'~q 

The mean values of the strength, 6a and (~Y2, which 
would arise from either of two populations acting 
alone are obtained from Equation 8 

(~l = OolL-U"'F(1 + 1/ml) (14) 

(~2 = CrozL-U"2F(1 + 1/m2) (15) 

The derivations of each of these models, in terms 
which are applicable to brittle fibres, are summarized 
below, and the implications in using each of these to 
characterize pitch-based carbon fibre tensile strength 
are discussed. 
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2.3. C o n c u r r e n t  mode l  
Because the fibre contains both flaw populations, it 
must survive both flaw populations if it is to survive 
stress level o. Because the flaw populations are inde- 
pendent, the total probability of the fibre survival, 
denoted as ST, is the product of the probabilities 
associated with each flaw population 

S T = S1S  2 (16) 

Substitution of Equations 12 and 13 into Equation 16 
yields the mathematical expression for the total prob- 
ability of survival for the fibre at gauge length L and 
stress level 

[ L (~ - - -~ - ) " -L (~-~-~ '2]  (17) 
S T = exp - \cYol// \ 0 0 2 / /  J 

f = xLmi(e;~m'exp~_ L( e~] '''] 
o" \O'olJ L \e;01/ J 

'-I'- (1 -- x_)Lm2(a"]mz exp[ LCa~m2~ 
0 \ ~ 0 2 /  \c~02/ A 

(22) 

This model of the fibre strength distribution re- 
quires that five parameters be determined from the 
experimental data, and from a practical point of view, 
would not seem applicable to carbon fibres. The as- 
sumption that both flaw populations cannot both 
exist in the same fibre seems questionable at best, and 
Johnson [-12] notes that, in general, one would not 
expect such a distribution of lifetimes unless samples 
were taken from parts processed by different methods. 

As with the simple model, the cumulative distribu- 
tion function for the concurrent model, F, is the prob- 
ability of failure and can be obtained from Equation 
17. The density function, f, is the first differential of the 
cumulative distribution function with respect to o 

F -  1 - e x p [ - L ( ~ ) " - L (  ~  ''~] (18) 
\ ~ 0 1 /  \ ( Y 0 2 /  A 

f ~- __Lr#+#ll( (Y L \0-01/- .+ m 2(~02) m2] 

xexp[-L( e; Y " - L ( a )  ''~] (19) 
\ 0"01/ \ O 0 2 J  J 

From a practical standpoint, the assumption that 
each fibre is subject to both flaw populations seems 
quite reasonable. Most flaws are introduced during 
processing, and one would expect that all fibres pro- 
cessed in the same batch would exhibit identical flaw 
populations. Thus, one might expect this four-para- 
meter model to be quite appropriate in modelling the 
strength distribution of pitch-based carbon fibres. 

2.4. Exclusive d is t r ibut ion  
The exclusive distribution is based on the premise that 
a fraction, x, of the fibre population contains flaw 
population 1 only, while the remaining fraction, 1 - x, 
contains only flaw population 2. Because the fibre can 
contain only one of two ftaw populations, it can sur- 
vive in two ways. The total probability of survival, Sx, 
is the sum of the probabilities that (1) the fibre con- 
tains and survives flaw population 1, and (2) the fibre 
contains and survives flaw population 2. 
Mathematically, this probability is expressed as 

S T -~- x S  1 ..~ (1 -- g) S 2 (20) 

The cumulative distribution and probability density 
functions are given below. 

F = I L(~ 1 -- xexp - \ O o l /  J 

x e x p [ -  L(~ "~] 
\Oo2/  J 

(21) 

2.5. Partially concurrent distribution 
In the partially concurrent model, there are again 
two flaw populations which, acting alone, give rise to 
a simple Weibull distribution of strength. Flaw popu- 
lation 1 is common to all the fibres, and a fraction x 
of the fibres contain only this background flaw. The 
remaining portion of the fibres ( 1 -  x) contain 
another distinct flaw population, in addition to the 
background flaw. 

The total survival probability resulting from these 
assumptions is 

S T = x S  1 -1- (1 - x)  S 1 S  2 (23) 

The cumulative distribution and probability density 
functions for this model are 

[ 1-xexp  - L  ~o'-~ol) ( l - x )  

• e x p [ -  L(~ ' ' -  L(a~"~ 
\Col /  \ o'02) __1 

F = 

(24) 

i = o. t )expL \oo1,,, j 

+ - -  _ _  + m2 
L \ o 0 : /  

x exp \ ~  \ ~  J 

The partially concurrent model, like the exclusive 
model, has five parameters. Inspection of Equation 25 
reveals that the partially concurrent model reduces to 
the concurrent model when x is zero, and it is similar 
in form to the exclusive flaw model. Johnson [12] 
notes that, for certain parameter values, the partially 
concurrent model and the exclusive model yield nearly 
identical descriptions of the experimental data. The 
assumptions of the partially concurrent model, how- 
ever, seem more feasible than those of the exclusive 
model for application to pitch-based carbon fibres. 

This finalizes the formulation of the three models 
proposed by Johnson [-12] for describing life-testing 
or reliability data when it is suspected that two flaw 
populations are present. In applying these distribu- 
tions to carbon fibres, one might be tempted to reject 
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the exclusive flaw model on the basis that the assump- 
tions seem inappropriate. However, the formulation of 
these various mixed distributions would not be neces- 
sary if the researcher knew a priori the nature of the 
flaw populations and their effect on strength. 

The distributions formulated by Johnson [12] are, 
of course, not the only models which might be for- 
mulated to describe life data. For example, Beetz [13] 
formulated a model based on the exclusive distribu- 
tion, but he allowed the parameter x, commonly refer- 
red to as the mixing parameter, to vary with gauge 
length. He used this model in conjunction with single- 
filament data obtained at four gauge lengths, ranging 
from 6.35-25.4 mm, to describe the strength distribu- 
tion of carbon fibres. Note that the derivation given 
above for both the exclusive and the partially concur- 
rent models is still valid if the mixing parameter varies 
with gauge length, but there would be one mixing 
parameter for each gauge length tested in addition to 
four Weibull parameters. For example, because Beetz 
[13-] tested fibres at four gauge lengths, his model 
contained eight parameters. 

Beetz [13] does not clearly indicate why this par- 
ticular mixed distribution was chosen, and beyond 
noting that a constant mixing parameter provided 
a poor description of the experimental data, he does 
not explore the implications of a mixing parameter 
which varies with gauge length. However, assuming 
that the two flaw populations within the fibre exist 
exclusively, the need to vary the mixing parameter 
might be justified in at least two special cases. One of 
the flaw populations might be associated with a flaw 
which occurs periodically along the fibre, and depend- 
ing" upon the periodicity of the flaw, short gauge 
lengths might be less likely to contain this flaw than 
are longer gauge lengths. 

On the other hand, the variation in the mixing 
parameter with gauge length might be the result of the 
accentuation of end effects at shorter gauge lengths. 
Recall that the object of the tensile test is to strain the 
total length of a fibre rigidly fixed at the ends. Un- 
doubtedly, some portion of the fibre near the ends is 
subject to a complex stress state, and the fraction of 
the total length subject to end effects increases as the 
gauge length decreases. Thus, one of the survival prob- 
abilities for the two flaw populations might actually be 
describing the probability that the fibre survives end 
effects rather than any flaw population contained 
within the fibre. 

Careful examination of Beetz's results [13J, listed in 
Table I, reveals that this might indeed be the case; the 
flaw population which tends to dominate at low gauge 
lengths (i.e. has the higher mixing parameter) actually 
gives rise to a lower probability of survival at any 
stress level than that which dominates at most longer 
gauge lengths. In other words, flaw population 1, 
referred to by Beetz [13] as failure mode 1, dominates 
at short gauge lengths and yields a lower mean 
strength. Thus, it is the more severe of the two failure 
modes. Because it is highly unlikely that the relative 
contribution of the more severe flaw decreases as 
gauge length increases, the conclusion that one of the 
"flaw populations" is the result of a testing artefact 

T A B L E  I Summary  of results obtained by Beetz [13] in modelling 
fibre strength. (%1 = 1.23; rn 1 = 9.56; %2 = 0.91; m 2 = 4.94) 

Gauge length, L x (Yl @2 
(ram) (GPa) (GPa) 

6.35 1.00 2.03 2.33 
12.70 0.92 1.89 2.02 
19.05 0.46 1,81 1.86 
25.40 0.81 1.76 1.76 

seems more feasible than the occurrence of a periodic 
flaw. 

Beetz [13] did not come to this same conclusion in 
his work, and therefore, did not attempt to develop 
a more consistent model based on the results. When 
the data obtained in the current work were analysed 
using each of the distributions developed above, the 
results were quite similar to those obtained by Beetz 
[13]. These findings, presented in Section 4, led to the 
development of the end-effect model, which is based 
on the assumption of one dominant flaw population. 
However, the strength distribution is also assumed to 
be affected by failures caused by stress concentration 
at the fixed ends. This model is derived below. 

2.6. End-effect model 
Assuming stress concentrations near the end of the 
fibre, some fibres are likely to fail due to the testing 
technique rather than the flaw population alone. Be- 
cause the cause of failure cannot be identified, those 
fibres which failed due to end effects can not be deleted 
from the experimental data. Thus, one specification 
was that the model must account for such failures. 
(Hereafter, end effects will be referred to as a failme 
mode. Obviously, they do not comprise a conven- 
tional flaw population.) 

In addition, any fibre tested by a single-filament 
tensile test will be subject to end effects, although 
longer gauge lengths would be less susceptible to end- 
effect related failures. Each fibre is also subject to 
failure due to the effects of the true flaw population(s). 
Thus, another aspect of the model was specified: the 
survival probabilities associated with end effects and 
flaw populations must act concurrently to determine 
the total probability of survival. 

Keeping the model as simple as possible is always 
desirable; therefore, it was assumed that the effects of 
all true flaws on the fibre strength distribution could 
be represented by a single, simple Weibull distribution 
of strength, based on weakest link theory. Therefore, 
the survival probability, $1, associated with flaws in 
the fibre is identical in form to that given earlier for the 
concurrent, exclusive, and partially concurrent distri- 
butions 

/ ~ "V",7 
S, = exp-/_.,t~l-oJ J (26) 

Because the Weibull distribution is flexible in shape, 
this distribution was also used to describe end effects. 
However, the gauge-length dependency derived earlier 
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is not applicable here, because it dictates that end 
effects act over the entire length of fibre. End effects 
only apply to some region of the fibre near the glue 
spots; therefore, a slightly different adaptation of the 
basic Weibull distribution defined in Equation 1 was 
required. 

The survival probability associated with end effects 
is based on the assumption that a region of length 5/2 
at each end of the fibre adjacent to the glue spots is 
subject to end effects. Load can be carried in these 
regions, but the stress concentrations at the fibre-glue 
interface give rise to a complex stress state in these 
regions. This results in a significantly different distri- 
bution of strength from that associated with the true 
flaw population: The total length of fibre subject to 
end effects is 8, and there is no justification for assum- 
ing that 6 varies with gauge length. Because 6 can also 
be considered to represent the number of individual 
links subject to end effects, the weakest link theory can 
be used to derive the survival probability associated 
with end effects 

S 2 = exp \(3"02, / -] 

However, because neither 6 nor Croz change with 
gauge length, the two parameters cannot be uniquely 
determined. Thus, in developing this model, the com- 
bination of these two parameters was represented by 
Cro2, and ~ was dropped as a separate parameter 

$2 = exp \~  ] ] 

Because the fibre must survive both end effects and the 
true flaw population if it is to survive stress level o, the 
total probability of survival is obtained in the same 
manner as that in the concurrent flaw model 

S T = S1S  2 (28) 

The cumulative distribution and density functions for 
this model, referred to as the end-effect model, are 
given in Equations 29 and 30, respectively 

[ t(--~-~ ~ml _ ( ~/oq (29) 
F = 1 -  exp - \ O o l /  \ ~ o 2 /  J 

f =  + 
(3"02 

[ "' (30) 
x exp - \ O o l /  \(roz,/ _1 

The form of this distribution, which has four para- 
meters, is nearly identical to that of the concurrent 
distribution, but the failure mode associated with end 
effects is not gauge-length dependent. 

Each of the models detailed in this section was used 
in an attempt to describe the strength distributions of 
round and trilobal fibres tested over a range of gauge 
lengths. As will be seen, the end-effect model, which 
is based on simple assumptions and accounts for 
a known inadequacy of the test method, provided the 
only adequate and consistent description of the ex- 
perimental data. Before these results are presented, the 
experimental techniques used to produce these fibres 
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will be discussed, as well as the bases used to compare 
the two different fibre shapes. 

3. Experimental procedure 
In this work, the tensile strengths of round and tri- 
lobal fibres were compared, and Fig. 4 illustrates 
the two bases used to compare the two shapes. In 
the equivalent area study, the two shapes possess 
equivalent volumes in which flaws can exist. In the 
equivalent thickness study, the diameter of the as-spun 
round fibre was equivalent to the thickness of the 
central portion of the limb of the trilobal fibre. The 
basis for the latter study was chosen to ensure equiva- 
lent heat-treatment conditions for the two shapes, 
because previous experience with large round fibres 
indicated that the effectiveness of the oxidation step 
can be limited by the distance through which oxygen 
must penetrate to stabilize the fibre. 

The precursor pitch was a heat-soaked mesophase, 
prepared according to the method given by Singer 
[14]. For  details on the equipment, procedures and 
exact conditions used to melt spin and heat treat all 
fibres, the reader is referred to Stoner [4]. Briefly, 
a pilot-scale extruder was used to melt spin the precur- 
sor into fibre form at temperatures ranging from 
342-354~ depending on the fibre shape and spin- 
nerette used. 

Oxidation and carbonization were conducted in 
a batch fashion. A typical temperature profile for the 
oxidation oven is shown in Fig. 5. At 180~ an in- 

Equivalent area Equivalent thickness 

Figure 4 Bases of comparison for round and trilobal carbon fibres. 

300" 
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~ loo. 
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Figure 5 Typical oxidation profile for round and trilobal pitch- 
based fibres. 



crease in bundle mass indicates the onset of oxidation, 
and all profiles employed a 30 rain soak at 180~ 
followed by a 1 ~ -1 temperature ramp until 
a mass gain of from 6 % - 8 %  was indicated. 

In carbonization, the fibres were heated to 1000 ~ 
at a rate of 20 ~ min-  1 to allow the slow evolution of 
light gases. For  round and trilobal fibres of equivalent 
area, this heating rate was maintained to the final 
carbonization temperature of 1900 ~ Improvements 
in the furance allowed the use of a much higher heat- 
ing rate, approximately 63 ~ min-  1, in heating round 
and trilobal fibres of equivalent thickness from 
1000~ to the final carbonization temperature of 
2400 ~ All fibres were held at the final temperature 
for 10 min. 

After carbonization, the fibres were subjected to 
single-filament testing, according to the standard de- 
scribed earlier, at gauge lengths of 10, 20, and 40 mm. 
For  each fibre type and at each gauge length, approx- 
imately 100 single-filament breaks were obtained on 
a Phoenix tensile testing device, a computerized test 
system built around an Instron model TM. The fibres 
were glued to the test tabs with excess fibre trailing off 
the ends, and a small section of the excess length was 
retained for cross-sectioning purposes prior to single- 
filament testing. 

For  round fibres, the diameter of the fibre was 
measured using an optical microscope equipped with 
a calibrated scale on the eyepiece. For  trilobal fibres, it 
was not feasible to measure the cross-sectional area of 

a section within the tested gauge length. This was 
because carbon fibres typically shatter upon failure, 
leaving no segments for use in cross-sectional area 
determination. However, this problem was overcome 
by retaining a segment of the fibre adjacent to that 
mounted for single-filament testing. This section was 
embedded in epoxy and the sample polished to obtain 
a smooth cross-section. Then, the cross-sectional areas 
of these segments were measured using a microscope 
in conjunction with an image analysis system. 

All of the distributions discussed previously were fit 
to the experimental data using the maximum likeli- 
hood method. The computer program used the first 
derivatives of the log-likelihood function, initial 
guesses input by the user, and a downhill simplex 
method to find the parameters which maximized the 
log-likelihood function (hereafter referred to simply as 
the likelihood function). 

As previously noted, a plot of the Weibull quantity 
(see Equation 9) versus the natural logarithm of the 
stress level is a convenient way to examine the data. 
These two quantities can be calculated given the para- 
meters of any of the distributions of interest. Because 
this plot gives a common basis for graphical compari- 
son of the fits of distributions based on different as- 
sumptions, it is used to present the results in the 
following sections. In addition, the value of the max- 
imum likelihood function (MLF) will be given for each 
fit, because larger MLF values indicate better fits of 
the experimental data. 

T A B L E  I I  Average  fibre proper t ies  for var ious  round  and  t r i lobal  fibres 

F ibre  shape  S tudy  G a u g e  length  Strength  Cross-sec t ional  area 

(mm) (GPa)  (tam 2) 

R o u n d  Equ iva len t  area* 10 2,15 114.8 

20 2,04 116.1 

40 1,95 114.0 

10 1.75 186,5 
20 1,65 183.7 

40 1,52 185.6 

R o u n d  10 2.16 70.0 

20 1.94 67.6 

40 1.84 67.6 

10 1.75 363.2 

20 1.59 373.9 

40 1.47 364.0 

Tr i loba l  Equ iva len t  area* 

Equ iva len t  th ickness  

Tr i loba l  Equ iva len t  th ickness  

* As-spun cross-sect ional  areas  of round  and  t r i lobal  fibres were equivalent .  

T A B L E  I I I  M L F  values  of var ious  mode ls  used to describe round  and  t r i lobal  fibre tensile da t a  

Model /no .  of pa rame te r s  R o u n d  Tr i loba l  R o u n d  Tr i lobal  

equ iva len t  a rea  equiva len t  a rea  equiva len t  th ickness  equiva len t  th ickness  
M L F  value M L F  value M L F  value M L F  value 

Simple  Weibu l l /2  - 216.7 - 155.2 - 303.4 - 272.4 

Concur ren t /4  - 213.9 " - 302.7 - 265.0 
Exclusive/5 - 207.8 - 148.5 - 289.8 - 256.5 
Par t i a l ly  concurren t /5  - 205.7 - 149.1 - 289.4 - 255.1 

Exclusive,  vary ing  x/7 - 195,7 - 145.9 - 282.1 - 251.1 

End-effect/4 - 195.3 - 147.4 - 282.9 - 248.9 

a No  un ique  pa rame te r  set found, 
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4 .  R e s u l t s  a n d  d i s c u s s i o n  
Table II presents the average fibre properties for the 
various fibre types utilized in this study, and Table [II 
gives the MLF values for the various models fit to the 
experimental data. In Table III, each model was fit 
using data at all gauge lengths simultaneously to ob- 
tain a single set of model parameters, and the MLF 
value was computed in the same fashion. The entry 
"exclusive model, varying x" in Table III corresponds 
to the model used by Beetz, and will be discussed in 
more detail below. 
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Figure 6 Simple Weibull distribution fit to trilobal fibre data, equi- 
valent thickness study: (a) 10 mm gauge length; (b) 20 mm gauge 
length; (c) 40 mm gauge length. 

6 5 7 0  

Only one fibre type, trilobal fibres from the equi- 
valent thickness study, will be used to illustrate the fit 
of the simple Weibull distribution and various models 
proposed by Johnson [-12], for the following reasons: 
first, it would not be feasible to present the fits for each 
model, gauge length, and fibre type studied, and more 
importantly, Johnson's models provided the same 
characteristic fit as a function of gauge length for all 
other fibre types. 

The fit of the simple Weibull distribution to trilobal 
fibre data is illustrated in Fig. 6. While the parameter 
set yields an adequate description at the middle gauge 
length, the Weibull quantity is underestimated at the 
shorter gauge length and overestimated at the longer 
gauge length. Figs 7-9 illustrate that while the higher 
order models proposed by Johnson gave improved 
MLFs, they suffered from the same deficiency. This 
also proved true for all other fibre types. 

While Beetz's adaptation 1-13] of the exclusive 
model has the disadvantage of containing a parameter 
which must be adjusted with gauge length, the earlier 
discussion of his work illustrates that useful insights 
can be obtained from fitting such a model. With three 
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Figure 7 Concurrent distribution fit to trilobal fibre data, equi- 
valent thickness study, 10 mm gauge length. 
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Figure 8 Exclusive distribution fit to trilobal fibre data, equivalent 
thickness study, 40 mm gauge length. 
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Figure 9 Partially concurrent distribution fit to trilobal fibre data, 
equivalent thickness study, 40 mm gauge length. 

T A B L E  IV Results of applying Beetz's model [13] to round and 
trilobal fibre tensile data 

Fibre shape/study Gauge x 61 62 
length, L (GPa) (GPa) 
(mm) 

Round, 
equivalent area 

Trilobal, 
equivalent area 

Round, 
equivalent thickness 

Trilobal, 
equivalent thickness 

10 1.00 2.14 2.50 
20 0.41 1.89 2.20 
40 0.00 1.68 1.93 

10 0.84 1.70 2.00 
20 0.34 1.45 1.74 
40 0.00 1.24 1.5l 

10 1.00 2.15 2.9l 
20 0.79 1.77 2.58 
40 0.53 1.46 2.28 

10 1.00 1.75 2.35 
20 0.73 1.40 2.08 
40 0.51 1.12 1.84 

gauge lengths and four Weibull parameters, this 
model required the fitting of seven parameters to the 
data for each fibre type. The results obtained in this 
study, which are presented in Table IV, were very 
similar to those obtained by Beetz [13]. The most 
severe flaw population (lowest mean strength) demon- 
strated a decreasing mixing parameter (i.e. less relative 
effect) as gauge length increased. Because this is more 
consistent with the nature of end effects rather than 
a true flaw population, the end-effect model was de- 
veloped and applied to the experimental data. 

The fit of this model is illustrated for each fibre type 
in Figs 10-13. As seen in the figures, the model pro- 
vided an excellent description of the experimental data 
over the range of gauge lengths studied. A T-ratio test, 
developed by Nelson [9] for comparing different mod- 
els on the basis of MLF values and number of para- 
meters required, was also applied to these results [1]. 
For each fibre type, the end-effect model provided 
a significantly better fit than all other models. 
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Figure 10 End-effect model fit to trilobal fibre data, equivalent area 
study: (a) 10 mm gauge length; (b) 20 mm gauge length; (c) 40 mm 
gauge length. 

One advantage of the end-effect model is that the 
survival probabilities $1 and $2 can be studied separ- 
ately to examine the impact of end effects on the 
experimental data or to separate end effects from the 
true strength distribution. An interesting example of 
this appears in Fig. 14. Here, the total survival prob- 
ability was dominated by end-effect related failure 
rather than the true flaw population. In the case of 
a round fibre for the equivalent thickness study, end 
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Figure l l  End-effect model fit to round fibre data, equivalent area 
study: (a) 10 mm gauge length; (b) 20 mm gauge length; (c) 40 mm 
gauge length. 
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Figure 12 End-effect model fit to trilobal fibre data, equivalent 
thickness study: (a) 10 mm gauge length; (b) 20 mm gauge length; 
(c) 40 mm gauge length. 

effects and true flaws had nearly equal impact on data 
taken at a 40 mm gauge length, although one might 
think that end effects would be of minor importance at 
this gauge length. 

Separation of end effects can be accomplished in 
other ways as well, and end-effect separation was 
particularly useful in comparing round and trilobal 
fibres. One approach used here was to calculate the 
average strength arising from $1 (true flaws) alone and 
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compare these for the fibres in each study. These 
results are presented in Figs 15 and 16 for the equi- 
valent area and equivalent thickness studies, respect- 
ively. The model indicates that in both studies, the 
round fibre is the stronger of the two shapes and that 
round and trilobal fibres in the equivalent area study 
exhibit similar dependencies of strength on gauge 
length. However, it should be noted that the average 
cross-sectional area of the trilobal fibre was a factor of 
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Figure 13 End-effect model fit to round fibre data, equivalent thick- 
ness study: (a) 10 mm gauge length; (b) 20 mm gauge length; 
(c) 40 mm gauge length. 

five larger  than  tha t  of  r o u n d  fibres in the equivalent  
thickness study. Because larger  fibres are easier to 
spin, it appea r s  tha t  t r i loba l  fibres do  offer the advan t -  
age of  compet i t ive  p roper t i e s  and  s impler  process ing 
at large cross-sect ional  areas,  whereas  large r o u n d  
fibres would  be difficult, if not  impossible ,  to stabil ize 
proper ly .  

~--- True flaws 

T ~ tp~lSbUabl ~it ~ --~ 

- i .o  oJo 1'.o 220 
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Figure 14 Influence of end effects and true flaws on total survival 
probability, trilobal fibre data, equivalent thickness study, 10 rnm 
gauge length. 

4.0 

0 -  

r 

3.0 

2.0 

Trilobal 

1.0 
0 1'0 2.O 3b 4b 50 

Gauge length (mm) 

Figure 15 Average strength associated with true flaws for round 
and trilobal fibres of equivalent area. 
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Figure 16 Average strength associated with true flaws for round 
and trilobal fibres of equivalent thickness. 

5. C o n c l u s i o n s  
In  the current  work,  an end-effect model  has been 
deve loped  to descr ibe s ingle-f i lament  da t a  for br i t t le  
fibres. This mode l  is based  on sound  physical  reason-  
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ing and accounts for a known inadequacy of the test 
method. The model provides a significantly better fit of 
the experimental data than does the simple Weibull 
distribution and a number of mixed distributions 
based on the Weibull. The results obtained here indic- 
ate end effects to be of critical importance at gauge 
lengths of 10 mm and shorter, and in some cases, at 
gauge lengths as long as 40 mm. The fitted model is 
easily used to separate end effects from the true fibre 
strength distribution, and the ability to do this is 
critical for comparative studies of brittle fibres. In this 
work, use of the model revealed no significant differ- 
ences in attainable strengths for fibres of different 
shapes. Rather, the advantage of alternate fibre cross- 
sectional geometries lies in a decreased sensitivity of 
fibre properties to fibre size as compared to conven- 
tional round fibres. 
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